Last updated: 2022-02-10

Checks: 7 0

Knit directory: snRNA_eqtl/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211124) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 14f12ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data_sensitive/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  analysis/._index.Rmd
    Untracked:  analysis/additional/
    Untracked:  analysis/alternatives/
    Untracked:  analysis/clean_analysis.Rmd
    Untracked:  analysis/log_run_slurm_out
    Untracked:  analysis/log_run_slurm_stderr
    Untracked:  analysis/portfolio/
    Untracked:  analysis/revision.Rmd
    Untracked:  analysis/run_slurm.Rscript
    Untracked:  analysis/run_slurm.sbatch
    Untracked:  data/dice/
    Untracked:  data/epigenome_enrichment/
    Untracked:  data/gencode/
    Untracked:  data/gnomad_loeuf/
    Untracked:  data/gtex/
    Untracked:  data/gwas/
    Untracked:  data/gwas_epigenome_overlap/
    Untracked:  data/locuszoom/
    Untracked:  data/magma_interaction_eqtl/
    Untracked:  data/magma_specific_genes/
    Untracked:  data/metabrain/
    Untracked:  data/umap/
    Untracked:  output/._.DS_Store
    Untracked:  output/coloc/
    Untracked:  output/eqtl/
    Untracked:  output/eqtl_specific/
    Untracked:  output/figures/
    Untracked:  output/gwas_epigenome_overlap/
    Untracked:  output/shiny/
    Untracked:  output/tables/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/04_coloc.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/get_tables.Rmd
    Modified:   analysis/plot_figures.Rmd
    Deleted:    output/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/08_prepare_Shiny.Rmd) and HTML (docs/08_prepare_Shiny.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html ef464c8 Julien Bryois 2022-02-09 Build site.
html 27e1e80 Julien Bryois 2022-02-02 Build site.
html c1c122b Julien Bryois 2022-01-28 Build site.
html c47b2d9 Julien Bryois 2022-01-26 Build site.
Rmd e995b14 Julien Bryois 2022-01-26 prepare Shiny
html 6a43e1a Julien Bryois 2022-01-26 Build site.
Rmd f804ef2 Julien Bryois 2022-01-26 prepare Shiny
Rmd fd2f2c9 Julien Bryois 2022-01-26 prepare Shiny

Setup

dir.create('output/shiny',showWarnings = FALSE)
hdF5_file_path <- "output/shiny/data.h5"

Libraries

library(tidyverse)
library(rhdf5)

Gene expression Processing

Load datasets

sum_expression_ms <- readRDS('data_sensitive/expression/ms_sum_expression.individual_id.rds') %>% 
  mutate(dataset='ms')
sum_expression_ad <- readRDS('data_sensitive/expression/ad_sum_expression.individual_id.rds') %>% 
  mutate(dataset='ad')

Aggregate datasets

sum_expression <- rbind(sum_expression_ms,sum_expression_ad)

Get CPM

sum_expression <- sum_expression %>% 
  group_by(individual_id,cell_type) %>% 
  mutate(libsize=sum(counts)) %>% 
  mutate(cpm=counts*10^6/libsize) %>% 
  mutate(log2_cpm=log2(cpm+1)) %>% 
  ungroup() %>% 
  mutate(gene=paste0(symbol,'_',ensembl))

Filter individuals

Only keep individuals, cell type with at least 10 cells

sum_expression <- filter(sum_expression,n_cells>10)

Create hdF5

h5createFile(hdF5_file_path)
[1] TRUE
h5createGroup(hdF5_file_path,"expression")
[1] TRUE
h5createGroup(hdF5_file_path,"genotype")
[1] TRUE
h5createGroup(hdF5_file_path,"eqtl_results")
[1] TRUE
h5createGroup(hdF5_file_path,"annotations")
[1] TRUE
h5createGroup(hdF5_file_path,"coloc")
[1] TRUE

Write expression

sum_expression %>% group_by(gene) %>% 
  do(write=h5write(.[,c('cell_type','individual_id','log2_cpm')], 
                   hdF5_file_path,paste0("expression/",unique(.$gene))))
# A tibble: 25,938 x 2
# Rowwise: 
   gene                    write    
   <chr>                   <list>   
 1 A1BG_ENSG00000121410    <dbl [1]>
 2 A1CF_ENSG00000148584    <dbl [1]>
 3 A2M_ENSG00000175899     <dbl [1]>
 4 A2ML1_ENSG00000166535   <dbl [1]>
 5 A3GALT2_ENSG00000184389 <dbl [1]>
 6 A4GALT_ENSG00000128274  <dbl [1]>
 7 A4GNT_ENSG00000118017   <dbl [1]>
 8 AAAS_ENSG00000094914    <dbl [1]>
 9 AACS_ENSG00000081760    <dbl [1]>
10 AADAC_ENSG00000114771   <dbl [1]>
# … with 25,928 more rows

Write eQTL

d <- read_tsv('output/eqtl/eqtl.PC70.txt') %>% 
  dplyr::select(cell_type,gene=pid,SNP=sid,slope,adj_p) %>% 
  mutate(slope=round(slope,digits=2),adj_p=signif(adj_p,digits=3))
h5write(d, hdF5_file_path,"eqtl_results/eqtl_results_all")

Write genotype

vcf <- data.table::fread("data_sensitive/genotypes/processed/combined_final.vcf.gz",
                         data.table=FALSE) %>% 
  as_tibble()
vcf_filt <- filter(vcf,ID%in%d$SNP) %>% 
  gather(individual,genotype,10:201) %>% 
  mutate(genotype_parsed=case_when(
      genotype=='1/1' ~ 2,
      genotype=='0/1' ~ 1,
      genotype=='1/0' ~ 1,
      genotype=='0/0' ~ 0,
    )) %>% 
  as_tibble() %>% 
  dplyr::select(ID,individual,REF,ALT,genotype_parsed) %>% 
  dplyr::rename(genotype=genotype_parsed)
  vcf_filt %>% group_by(ID) %>% 
    do(write=h5write(.[,c('individual','REF','ALT','genotype')], 
                   hdF5_file_path,paste0("genotype/",unique(.$ID))))
# A tibble: 77,887 x 2
# Rowwise: 
   ID                  write    
   <chr>               <list>   
 1 chr1:120288148_G_A  <dbl [1]>
 2 chr1:144872614_G_C  <dbl [1]>
 3 chr1:15670060_C_G   <dbl [1]>
 4 chr1:201330714_G_T  <dbl [1]>
 5 chr1:22932928_C_G   <dbl [1]>
 6 chr10:100742917_G_C <dbl [1]>
 7 chr10:103719262_C_G <dbl [1]>
 8 chr10:17991504_A_G  <dbl [1]>
 9 chr10:26666405_A_G  <dbl [1]>
10 chr10:36742286_G_C  <dbl [1]>
# … with 77,877 more rows

Write cell-type specific eQTL

d <- read_tsv('output/eqtl_specific/eqtl.PC70.specific.txt') %>% 
  #Sets pvalue to NA if the model did not converge
  mutate(nb_pvalue_aggregate=
           ifelse(nb_pvalue_aggregate_model_converged==FALSE,NA,nb_pvalue_aggregate)) %>% 
  mutate(nb_pvalue_at_least_one=
           ifelse(nb_pvalue_at_least_one_model_converged==FALSE,NA,nb_pvalue_at_least_one)) %>%   
  filter(!is.na(nb_pvalue_aggregate), #Remove genes for which the model did not converge (9 genes)
         !is.na(nb_pvalue_at_least_one),
         nb_pvalue_at_least_one!=Inf) %>% 
  #Get adjusted pvalues
  mutate(nb_pvalue_aggregate_adj=p.adjust(nb_pvalue_aggregate,method='fdr'),
         nb_pvalue_at_least_one_adj=p.adjust(nb_pvalue_at_least_one,method = 'fdr')) %>% 
  #For each row, get the maximum pvalue across all cell types, 
  #this will be the gene-level pvalue testing whether the genetic effect 
  #on gene expression is different than all other cell types
  rowwise() %>% 
  mutate(nb_pvalue_sig_all=max(Astrocytes_p,
                               `Endothelial cells_p`,
                               `Excitatory neurons_p`,
                               `Inhibitory neurons_p`,
                                Microglia_p,
                                Oligodendrocytes_p,
                                `OPCs / COPs_p`,
                                Pericytes_p,
                                na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(nb_pvalue_all_adj = p.adjust(nb_pvalue_sig_all,method='fdr')) %>% 
  dplyr::select(cell_type=cell_type_id,
                gene=gene_id,
                SNP=snp_id,
                nb_pvalue_aggregate_adj,
                nb_pvalue_at_least_one_adj,
                nb_pvalue_all_adj) %>% 
  mutate(nb_pvalue_aggregate_adj=signif(nb_pvalue_aggregate_adj,digits=3),
         nb_pvalue_at_least_one_adj=signif(nb_pvalue_at_least_one_adj,digits=3),
         nb_pvalue_all_adj=signif(nb_pvalue_all_adj,digits=3))
h5write(d, hdF5_file_path,"eqtl_results/eqtl_results_specific")

Write Coloc

filter_coloc <- function(d,threshold=0.5){
  genes2keep <- d %>% filter(PP.H4.abf>threshold) %>% pull(ensembl)
  d <- filter(d,ensembl%in%genes2keep)
  return(d)
}
ad <- read_tsv('output/coloc/coloc.ad.txt') %>% filter_coloc()
pd <- read_tsv('output/coloc/coloc.pd.txt')%>% filter_coloc()
scz <- read_tsv('output/coloc/coloc.scz.txt')%>% filter_coloc()
ms <- read_tsv('output/coloc/coloc.ms.txt')%>% filter_coloc()
ms_gtex_dice <- read_tsv('output/coloc/coloc.ms.gtex_dice.txt') %>% filter_coloc()
h5write(ad, hdF5_file_path,"coloc/ad")
h5write(pd, hdF5_file_path,"coloc/pd")
h5write(scz, hdF5_file_path,"coloc/scz")
h5write(ms, hdF5_file_path,"coloc/ms")
h5write(ms_gtex_dice, hdF5_file_path,"coloc/ms_gtex_dice")

sessionInfo()
R version 4.0.1 (2020-06-06)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /pstore/apps/OpenBLAS/0.3.1-GCC-7.3.0-2.30/lib/libopenblasp-r0.3.1.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] rhdf5_2.32.4    forcats_0.5.0   stringr_1.4.0   dplyr_1.0.0    
 [5] purrr_0.3.4     readr_1.3.1     tidyr_1.1.0     tibble_3.0.1   
 [9] ggplot2_3.3.3   tidyverse_1.3.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6        lubridate_1.7.9   lattice_0.20-41   assertthat_0.2.1 
 [5] rprojroot_1.3-2   digest_0.6.25     utf8_1.1.4        R6_2.4.1         
 [9] cellranger_1.1.0  backports_1.1.7   reprex_0.3.0      evaluate_0.14    
[13] httr_1.4.1        pillar_1.4.4      rlang_0.4.10      readxl_1.3.1     
[17] rstudioapi_0.11   data.table_1.12.8 whisker_0.4       blob_1.2.1       
[21] R.oo_1.23.0       R.utils_2.9.2     rmarkdown_2.2     munsell_0.5.0    
[25] broom_0.5.6       compiler_4.0.1    httpuv_1.5.4      modelr_0.1.8     
[29] xfun_0.14         pkgconfig_2.0.3   htmltools_0.5.1.1 tidyselect_1.1.0 
[33] workflowr_1.6.2   fansi_0.4.1       crayon_1.3.4      dbplyr_1.4.4     
[37] withr_2.2.0       later_1.1.0.1     R.methodsS3_1.8.0 grid_4.0.1       
[41] nlme_3.1-148      jsonlite_1.6.1    gtable_0.3.0      lifecycle_0.2.0  
[45] DBI_1.1.0         git2r_0.27.1      magrittr_1.5      scales_1.1.1     
[49] cli_2.0.2         stringi_1.4.6     fs_1.4.1          promises_1.1.1   
[53] xml2_1.3.2        ellipsis_0.3.1    generics_0.0.2    vctrs_0.3.1      
[57] Rhdf5lib_1.10.0   tools_4.0.1       glue_1.4.1        hms_0.5.3        
[61] yaml_2.2.1        colorspace_1.4-1  rvest_0.3.5       knitr_1.28       
[65] haven_2.3.1