Last updated: 2022-02-02
Checks: 7 0
Knit directory: snRNA_eqtl/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211124)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a7fc8c0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/magma_interaction_eqtl/
Ignored: data/magma_specific_genes/
Ignored: data_sensitive/
Ignored: output/figures/
Untracked files:
Untracked: analysis/._index.Rmd
Untracked: analysis/additional/
Untracked: analysis/alternatives/
Untracked: analysis/clean_analysis.Rmd
Untracked: analysis/log_run_slurm_out
Untracked: analysis/log_run_slurm_stderr
Untracked: analysis/portfolio/
Untracked: analysis/revision.Rmd
Untracked: analysis/run_slurm.Rscript
Untracked: analysis/run_slurm.sbatch
Untracked: data/dice/
Untracked: data/epigenome_enrichment/
Untracked: data/gencode/
Untracked: data/gnomad_loeuf/
Untracked: data/gtex/
Untracked: data/gwas/
Untracked: data/gwas_epigenome_overlap/
Untracked: data/metabrain/
Untracked: data/umap/
Untracked: output/coloc/
Untracked: output/eqtl/
Untracked: output/eqtl_specific/
Untracked: output/gwas_epigenome_overlap/
Untracked: output_almost_final/
Untracked: output_tmp_QTLtools/
Untracked: output_tmp_fastQTL_sample_ambient_removed/
Unstaged changes:
Modified: .gitignore
Modified: analysis/_site.yml
Modified: analysis/plot_figures.Rmd
Deleted: output/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/07_GWAS_epigenome_overlap.Rmd
) and HTML (docs/07_GWAS_epigenome_overlap.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | b50da3b | Julien Bryois | 2022-02-02 | Build site. |
html | b6554cb | Julien Bryois | 2022-01-28 | Build site. |
html | 7d4295b | Julien Bryois | 2022-01-28 | Build site. |
html | 3c1e548 | Julien Bryois | 2022-01-25 | Build site. |
Rmd | 615e226 | Julien Bryois | 2022-01-25 | GWAS epigenome overlap |
library(tidyverse)
library(liftOver)
path <- system.file(package="liftOver", "extdata", "hg38ToHg19.over.chain")
ch <- import.chain(path)
r2_threshold <- 0.8
get_gwas_linked_snps <- function(x,threshold=r2_threshold){
if(nrow(x)>1){
x <- filter(x,R2>=0.1) %>%
mutate(chr_snp=Coord %>% gsub(':.+','',.) %>% unique(),
chr_numeric=gsub('chr','',chr_snp),
start_snp=Coord %>% gsub('chr[0-9]{1,2}:','',.) %>% as.numeric(),
end_snp=start_snp) %>%
dplyr::select(chr_snp,start_snp,end_snp,everything()) %>%
dplyr::select(-Correlated_Alleles,-Dprime,-Alleles,-Coord) %>%
mutate(locus_name=paste0(chr_snp,':',min(start_snp),'_',max(end_snp))) %>%
dplyr::rename(Distance_from_index_SNP=Distance)
top_snp_df <- filter(x,Distance_from_index_SNP==0)
top_snp_pos <- top_snp_df %>% mutate(Coord=paste0(chr_snp,':',start_snp)) %>% pull(Coord)
x <- filter(x,R2>=threshold) %>%
mutate(GWAS_snp_pos=top_snp_pos) %>%
mutate(RS_Number=ifelse(RS_Number=='.',paste0(chr_snp,':',start_snp,'-',end_snp),RS_Number))
return(x)
}
else{
return(NULL)
}
}
proxy_snps_pd <- readRDS('data/gwas/pd/loci_LDlinkR.allSNPs.EUR.rds')
potential_causal_snps_pd <- mclapply(proxy_snps_pd,get_gwas_linked_snps,mc.cores=20) %>%
bind_rows() %>%
arrange(chr_numeric,start_snp) %>%
dplyr::select(-chr_numeric) %>%
mutate(trait='pd')
proxy_snps_ad <- readRDS('data/gwas/ad/loci_LDlinkR.allSNPs.EUR.rds')
potential_causal_snps_ad <- mclapply(proxy_snps_ad,get_gwas_linked_snps,mc.cores=20) %>%
bind_rows() %>%
arrange(chr_numeric,start_snp) %>%
dplyr::select(-chr_numeric) %>%
mutate(trait='ad')
proxy_snps_ms <- readRDS('data/gwas/ms/loci_LDlinkR.allSNPs.EUR.rds')
potential_causal_snps_ms <- mclapply(proxy_snps_ms,get_gwas_linked_snps,mc.cores=20) %>%
bind_rows() %>%
arrange(chr_numeric,start_snp) %>%
dplyr::select(-chr_numeric) %>%
mutate(trait='ms')
proxy_snps_scz <- readRDS('data/gwas/scz/loci_LDlinkR.allSNPs.EUR.rds')
potential_causal_snps_scz <- mclapply(proxy_snps_scz,get_gwas_linked_snps,mc.cores=20) %>%
bind_rows() %>%
arrange(chr_numeric,start_snp) %>%
dplyr::select(-chr_numeric) %>%
mutate(trait='scz')
potential_causal_snps <- rbind(potential_causal_snps_pd,potential_causal_snps_ad,potential_causal_snps_ms,potential_causal_snps_scz)
write_tsv(potential_causal_snps,paste0('data/gwas_epigenome_overlap/GWAS_1kg_linked_SNPs_r',r2_threshold,'.bed'),col_names = FALSE)
corces_hg38 <- readxl::read_xlsx('data/epigenome_enrichment/external_data/corces/Corces_etal_Nat_Neuro_2020_TableS4.xlsx',skip=16)
corces_hg38 <- corces_hg38 %>%
gather(cell_type,present,ExcitatoryNeurons:OPCs) %>%
group_by(Peak_ID) %>%
mutate(count_present=sum(present)) %>%
ungroup() %>%
mutate(specific=ifelse(present==1 & count_present==1,1,0)) %>%
filter(present==1) %>%
mutate(study='Corces') %>%
dplyr::select(hg38_Chromosome,hg38_Start,hg38_Stop,study,cell_type,specific,Annotation) %>%
makeGRangesFromDataFrame(., TRUE)
Lift to hg19
corces_hg19 <- liftOver(corces_hg38,ch) %>%
unlist() %>%
as.data.frame() %>%
as_tibble() %>%
dplyr::select(seqnames:end,study,cell_type,specific,Annotation) %>%
write_tsv(.,'data/gwas_epigenome_overlap/corces_hg19.bed',col_names=FALSE)
Hg19
process_nott <- function(df,cell_type,Annotation){
df <- setNames(df,c('chr','start','end')) %>% filter(!is.na(chr))
df <- df %>%
filter(chr%in%paste0('chr',1:22)) %>%
arrange(chr,start) %>%
unique() %>%
mutate(study='Nott',cell_type=cell_type, Annotation=Annotation) %>%
write_tsv(.,paste0('data/epigenome_enrichment/external_data/nott/',cell_type,'.',Annotation,'.bed'),col_names = FALSE)
}
astro_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=5) %>%
process_nott(.,cell_type='Astrocytes',Annotation='Enhancer')
astro_promoter <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=6) %>%
process_nott(.,cell_type='Astrocytes',Annotation='Promoter')
neuronal_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=7) %>%
process_nott(.,cell_type='Neurons',Annotation='Enhancer')
neuronal_promoter <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=8) %>%
process_nott(.,cell_type='Neurons',Annotation='Promoter')
oligo_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=9) %>%
process_nott(.,cell_type='Oligodendrocytes',Annotation='Enhancer')
oligo_promoter <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=10) %>%
process_nott(.,cell_type='Oligodendrocytes',Annotation='Promoter')
micro_enhancer <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=11) %>%
process_nott(.,cell_type='Microglia',Annotation='Enhancer')
micro_promoter <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=12) %>%
process_nott(.,cell_type='Microglia',Annotation='Promoter')
source ~/.bashrc
cd data/epigenome_enrichment/external_data/nott
ml bedtools/2.25.0-goolf-1.7.20
bedtools intersect -v -a Astrocytes.Enhancer.bed -b Microglia.Enhancer.bed Neurons.Enhancer.bed Oligodendrocytes.Enhancer.bed > Astrocytes.Enhancer_specific.bed
bedtools intersect -v -a Microglia.Enhancer.bed -b Astrocytes.Enhancer.bed Neurons.Enhancer.bed Oligodendrocytes.Enhancer.bed > Microglia.Enhancer_specific.bed
bedtools intersect -v -a Neurons.Enhancer.bed -b Astrocytes.Enhancer.bed Microglia.Enhancer.bed Oligodendrocytes.Enhancer.bed > Neurons.Enhancer_specific.bed
bedtools intersect -v -a Oligodendrocytes.Enhancer.bed -b Astrocytes.Enhancer.bed Microglia.Enhancer.bed Neurons.Enhancer.bed > Oligodendrocytes.Enhancer_specific.bed
source ~/.bashrc
cd data/epigenome_enrichment/external_data/nott
ml bedtools/2.25.0-goolf-1.7.20
bedtools intersect -v -a Astrocytes.Promoter.bed -b Microglia.Promoter.bed Neurons.Promoter.bed Oligodendrocytes.Promoter.bed > Astrocytes.Promoter_specific.bed
bedtools intersect -v -a Microglia.Promoter.bed -b Astrocytes.Promoter.bed Neurons.Promoter.bed Oligodendrocytes.Promoter.bed > Microglia.Promoter_specific.bed
bedtools intersect -v -a Neurons.Promoter.bed -b Astrocytes.Promoter.bed Microglia.Promoter.bed Oligodendrocytes.Promoter.bed > Neurons.Promoter_specific.bed
bedtools intersect -v -a Oligodendrocytes.Promoter.bed -b Astrocytes.Promoter.bed Microglia.Promoter.bed Neurons.Promoter.bed > Oligodendrocytes.Promoter_specific.bed
specific_files <- list.files('data/epigenome_enrichment/external_data/nott',pattern='specific.bed',full.names = TRUE)
Nott_specific_hg19 <- tibble(files=specific_files) %>%
mutate(file_content=map(files,read_tsv,col_names=FALSE)) %>%
unnest(file_content) %>%
dplyr::select(-files) %>%
mutate(id=paste0(X1,':',X2,'-',X3,'-',X5,'-',X6))
nott_files <- list.files('data/epigenome_enrichment/external_data/nott',pattern='.bed',full.names = TRUE) %>% grep('specific',.,value=TRUE,invert=TRUE)
nott_hg19 <- tibble(files=nott_files) %>%
mutate(file_content=map(files,read_tsv,col_names=FALSE)) %>%
unnest(file_content) %>%
dplyr::select(-files) %>%
mutate(id=paste0(X1,':',X2,'-',X3,'-',X5,'-',X6)) %>%
mutate(specific=ifelse(id%in%Nott_specific_hg19$id,1,0)) %>%
setNames(c('seqnames','start','end','study','cell_type','Annotation','id','specific')) %>%
dplyr::select(seqnames,start,end,study,cell_type,specific,Annotation)
Get all peaks discovered in corces et al. and nott et al.
bed <- rbind(corces_hg19,nott_hg19) %>%
arrange(seqnames,start) %>%
write_tsv(.,'data/gwas_epigenome_overlap/epigenomic_marks.bed',col_names=FALSE)
Add distance from enhancer to closest TSS
gtf <- rtracklayer::import('data/gencode/gencode.v39lift37.annotation.gtf.gz') %>%
as.data.frame() %>%
dplyr::filter(type=='gene',gene_type=='protein_coding') %>%
dplyr::select(seqnames,start,end,strand,gene_id,gene_name) %>%
mutate(TSS_start=ifelse(strand=='+',start,end),
TSS_end=ifelse(strand=='+',start,end)) %>%
as_tibble() %>%
mutate(gene=paste0(gene_name,'_',gsub('\\..+','',gene_id))) %>%
filter(seqnames %in% paste0('chr',1:22)) %>%
mutate(seqnames=as.character(seqnames)) %>%
arrange(seqnames,start) %>%
dplyr::select(seqnames,TSS_start,TSS_end,gene) %>%
write_tsv(.,'data/gwas_epigenome_overlap/gencode.v39lift37.annotation.protein_coding.1_22.TSS.bed',col_names = FALSE)
source ~/.bashrc
ml bedtools/2.25.0-goolf-1.7.20
cd data/gwas_epigenome_overlap
bedtools intersect -wa -wb -a epigenomic_marks.bed -b GWAS_1kg_linked_SNPs_r0.8.bed > GWAS_epigenomic_marks.bed
sort -k1,1V -k2,2n GWAS_epigenomic_marks.bed > GWAS_epigenomic_marks.sorted.bed
sort -k1,1V -k2,2n -k3,3n gencode.v39lift37.annotation.protein_coding.1_22.TSS.bed > gencode.v39lift37.annotation.protein_coding.1_22.TSS.sorted.bed
bedtools closest -d -t first -wa -a GWAS_epigenomic_marks.sorted.bed -b gencode.v39lift37.annotation.protein_coding.1_22.TSS.sorted.bed > GWAS_epigenomic_marks.closest_gene.bed
Add distance to coloc genes
read_coloc <- function(path){
coloc <- read_tsv(path) %>%
dplyr::select(locus,ensembl,symbol,tissue,PP.H4.abf) %>%
dplyr::rename(phenotype=ensembl,hgnc_symbol=symbol,locus_name=locus) %>%
filter(PP.H4.abf>0.7)
#If coloc was performed for the same genes located in loci in close proximity, take the best
coloc <- coloc %>% group_by(phenotype,tissue) %>%
slice_max(n=1,order_by=PP.H4.abf,with_ties=FALSE) %>%
ungroup()
return(coloc)
}
coloc_ms <- read_coloc('output/coloc/coloc.ms.txt') %>% mutate(trait='ms')
coloc_ad <- read_coloc('output/coloc/coloc.ad.txt') %>% mutate(trait='ad')
coloc_scz <- read_coloc('output/coloc/coloc.scz.txt') %>% mutate(trait='scz')
coloc_pd <- read_coloc('output/coloc/coloc.pd.txt') %>% mutate(trait='pd')
coloc <- rbind(coloc_ms,coloc_ad,coloc_scz,coloc_pd) %>%
arrange(-PP.H4.abf) %>%
mutate(gene=paste0(hgnc_symbol,'_',phenotype)) %>%
dplyr::select(gene,tissue,PP.H4.abf,trait)
gtf_coloc <- inner_join(gtf,coloc,by='gene') %>%
mutate(chr_numeric = as.numeric(gsub('chr','',seqnames))) %>%
arrange(chr_numeric,TSS_start) %>%
dplyr::select(-chr_numeric) %>%
write_tsv('data/gwas_epigenome_overlap/coloc_genes.bed',col_names = FALSE)
source ~/.bashrc
ml bedtools/2.25.0-goolf-1.7.20
cd data/gwas_epigenome_overlap
bedtools closest -d -t all -wa -a GWAS_epigenomic_marks.closest_gene.bed -b coloc_genes.bed > GWAS_epigenomic_marks.closest_gene.closest_coloc.bed
dir.create('output/gwas_epigenome_overlap',showWarnings = FALSE)
res <- read_tsv('data/gwas_epigenome_overlap/GWAS_epigenomic_marks.closest_gene.closest_coloc.bed',col_names = FALSE) %>%
setNames(c(colnames(bed),colnames(potential_causal_snps),'chr_gene','start_gene','end_gene','closest_TSS_from_regulatory_region','distance_to_closest_TSS','chr_coloc_gene','start_coloc_gene','end_coloc_gene','closest_coloc_TSS_from_regulatory_region','cell_type_coloc','PP.H4.abf','trait_coloc','distance_to_closest_coloc_TSS')) %>%
dplyr::select(-MAF,-chr_gene,-start_gene,-end_gene,-chr_coloc_gene,-start_coloc_gene,-end_coloc_gene) %>%
#add_count(RS_Number,name = 'n_SNP_overlap') %>%
dplyr::rename(chr_epigenome=seqnames,start_epigenome=start,end_epigenome=end,study_epigenome=study,Annotation_study=Annotation) %>%
arrange(chr_epigenome,start_epigenome) %>%
write_tsv(.,'output/gwas_epigenome_overlap/GWAS_epigenomic_marks.closest_gene.closest_coloc.txt')
Get regions of interest
res <- res %>% mutate(cell_type_coloc_parsed = case_when(
cell_type_coloc %in% c('Excitatory neurons','Inhibitory neurons') ~'Neurons',
cell_type_coloc %in% c('OPCs / COPs') ~'OPCs',
TRUE ~ cell_type_coloc
)) %>%
mutate(cell_type_parsed = case_when(
cell_type %in% c('ExcitatoryNeurons','InhibitoryNeurons') ~ 'Neurons',
TRUE ~cell_type
)) %>%
mutate(width=end_epigenome-start_epigenome+1)
Only keep SNPs overlaping epigenomic marks that are located less than 100kb from the TSS of a coloc gene, for which the epigenomic mark was detected in the coloc cell types.
potential_sequences_of_interest <- filter(res,distance_to_closest_coloc_TSS<100000,trait==trait_coloc,cell_type_coloc_parsed==cell_type_parsed)
eqtl_files_to_read <- potential_sequences_of_interest %>%
dplyr::select(chr_epigenome,cell_type_coloc) %>% unique()
get_eqtl_pvalue <- function(i){
df <- data.table::fread(paste0('data_sensitive/eqtl/PC70_nominal/',make.names(eqtl_files_to_read$cell_type_coloc[i]),'.',gsub('chr','',eqtl_files_to_read$chr_epigenome[i]),'.gz')) %>%
filter(V2%in%potential_sequences_of_interest$RS_Number,
V1%in%potential_sequences_of_interest$closest_coloc_TSS_from_regulatory_region) %>%
dplyr::select(closest_coloc_TSS_from_regulatory_region=V1,RS_Number=V2,p_eqtl=V4,beta_eqtl=V5) %>%
as_tibble() %>%
mutate(cell_type_coloc=eqtl_files_to_read$cell_type_coloc[i])
}
eqtl_pvalues <- mclapply(1:nrow(eqtl_files_to_read),get_eqtl_pvalue,mc.cores=20) %>% bind_rows()
potential_sequences_of_interest <- left_join(potential_sequences_of_interest,eqtl_pvalues,by=c('closest_coloc_TSS_from_regulatory_region','RS_Number','cell_type_coloc'))
potential_sequences_of_interest <- potential_sequences_of_interest %>% dplyr::select(chr_epigenome:study_epigenome,cell_type_epigenome=cell_type,specific,RS_Number,R2,RegulomeDB,Function,locus_name,trait_coloc,closest_coloc_TSS_from_regulatory_region,distance_to_closest_coloc_TSS,cell_type_coloc,PP.H4.abf,p_eqtl) %>%
write_csv('data/gwas_epigenome_overlap/GWAS_epigenomic_marks.closest_gene.closest_coloc.filtered.csv')
cd data/gwas_epigenome_overlap
cut -d ',' -f 7 GWAS_epigenomic_marks.closest_gene.closest_coloc.filtered.csv | sort -u |grep -v 'RS_Number' > snps_4_SNP2TFBS.txt
Use webtool at: https://ccg.epfl.ch/snp2tfbs/snpselect.php
if(file.exists('data/gwas_epigenome_overlap/SNP2TFBS_out.txt')){
snp2tfbs <- read_tsv('data/gwas_epigenome_overlap/SNP2TFBS_out.txt',col_names = FALSE) %>%
dplyr::select(RS_Number=X7,X6) %>% mutate(SNP2TFBS_disrupted_TFmotif=gsub('.+TF=|;Score.+','',X6)) %>%
dplyr::select(-X6)
potential_sequences_of_interest <- left_join(potential_sequences_of_interest,snp2tfbs,by='RS_Number')
write_csv(potential_sequences_of_interest,'output/gwas_epigenome_overlap/GWAS_epigenomic_marks.closest_gene.closest_coloc.filtered.SNP2TFBS.txt')
}
sessionInfo()
R version 4.0.1 (2020-06-06)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /pstore/apps/OpenBLAS/0.3.1-GCC-7.3.0-2.30/lib/libopenblasp-r0.3.1.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] liftOver_1.12.0
[2] Homo.sapiens_1.3.1
[3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[4] org.Hs.eg.db_3.11.4
[5] GO.db_3.11.4
[6] OrganismDbi_1.30.0
[7] GenomicFeatures_1.40.0
[8] AnnotationDbi_1.50.0
[9] Biobase_2.48.0
[10] rtracklayer_1.48.0
[11] GenomicRanges_1.40.0
[12] GenomeInfoDb_1.24.0
[13] IRanges_2.22.2
[14] S4Vectors_0.26.1
[15] BiocGenerics_0.34.0
[16] gwascat_2.20.1
[17] forcats_0.5.0
[18] stringr_1.4.0
[19] dplyr_1.0.0
[20] purrr_0.3.4
[21] readr_1.3.1
[22] tidyr_1.1.0
[23] tibble_3.0.1
[24] ggplot2_3.3.3
[25] tidyverse_1.3.0
[26] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-148 matrixStats_0.56.0
[3] bitops_1.0-6 fs_1.4.1
[5] lubridate_1.7.9 bit64_0.9-7
[7] progress_1.2.2 httr_1.4.1
[9] rprojroot_1.3-2 tools_4.0.1
[11] backports_1.1.7 R6_2.4.1
[13] DBI_1.1.0 colorspace_1.4-1
[15] withr_2.2.0 prettyunits_1.1.1
[17] tidyselect_1.1.0 curl_4.3
[19] bit_1.1-15.2 compiler_4.0.1
[21] git2r_0.27.1 graph_1.66.0
[23] cli_2.0.2 rvest_0.3.5
[25] xml2_1.3.2 DelayedArray_0.14.0
[27] scales_1.1.1 RBGL_1.64.0
[29] askpass_1.1 rappdirs_0.3.1
[31] Rsamtools_2.4.0 digest_0.6.25
[33] rmarkdown_2.2 XVector_0.28.0
[35] pkgconfig_2.0.3 htmltools_0.5.1.1
[37] dbplyr_1.4.4 rlang_0.4.10
[39] readxl_1.3.1 rstudioapi_0.11
[41] RSQLite_2.2.0 generics_0.0.2
[43] jsonlite_1.6.1 BiocParallel_1.22.0
[45] RCurl_1.98-1.2 magrittr_1.5
[47] GenomeInfoDbData_1.2.3 Matrix_1.2-18
[49] Rcpp_1.0.6 munsell_0.5.0
[51] fansi_0.4.1 lifecycle_0.2.0
[53] stringi_1.4.6 whisker_0.4
[55] yaml_2.2.1 SummarizedExperiment_1.18.1
[57] zlibbioc_1.34.0 BiocFileCache_1.12.0
[59] grid_4.0.1 blob_1.2.1
[61] promises_1.1.1 crayon_1.3.4
[63] lattice_0.20-41 Biostrings_2.56.0
[65] haven_2.3.1 hms_0.5.3
[67] knitr_1.28 pillar_1.4.4
[69] biomaRt_2.44.4 reprex_0.3.0
[71] XML_3.99-0.3 glue_1.4.1
[73] evaluate_0.14 BiocManager_1.30.10
[75] modelr_0.1.8 vctrs_0.3.1
[77] httpuv_1.5.4 cellranger_1.1.0
[79] openssl_1.4.1 gtable_0.3.0
[81] assertthat_0.2.1 xfun_0.14
[83] broom_0.5.6 later_1.1.0.1
[85] GenomicAlignments_1.24.0 memoise_1.1.0
[87] ellipsis_0.3.1