Last updated: 2022-02-02
Checks: 7 0
Knit directory: snRNA_eqtl/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211124)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 40b6b67. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/magma_interaction_eqtl/
Ignored: data/magma_specific_genes/
Ignored: data_sensitive/
Ignored: output/figures/
Untracked files:
Untracked: analysis/._index.Rmd
Untracked: analysis/additional/
Untracked: analysis/alternatives/
Untracked: analysis/clean_analysis.Rmd
Untracked: analysis/log_run_slurm_out
Untracked: analysis/log_run_slurm_stderr
Untracked: analysis/portfolio/
Untracked: analysis/revision.Rmd
Untracked: analysis/run_slurm.Rscript
Untracked: analysis/run_slurm.sbatch
Untracked: data/dice/
Untracked: data/epigenome_enrichment/
Untracked: data/gencode/
Untracked: data/gnomad_loeuf/
Untracked: data/gtex/
Untracked: data/gwas/
Untracked: data/gwas_epigenome_overlap/
Untracked: data/metabrain/
Untracked: data/umap/
Untracked: output/coloc/
Untracked: output/eqtl/
Untracked: output_almost_final/
Untracked: output_tmp_QTLtools/
Untracked: output_tmp_fastQTL_sample_ambient_removed/
Unstaged changes:
Modified: .gitignore
Modified: analysis/_site.yml
Modified: analysis/plot_figures.Rmd
Deleted: output/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/06_eqtl_epigenome_enrichment.Rmd
) and HTML (docs/06_eqtl_epigenome_enrichment.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | c6844a1 | Julien Bryois | 2022-01-28 | Build site. |
html | 17aa0ed | Julien Bryois | 2022-01-28 | Build site. |
Rmd | d1c1d2d | Julien Bryois | 2022-01-28 | epigenome_enrichment |
html | 311cd5c | Julien Bryois | 2022-01-25 | Build site. |
Rmd | 837ddf9 | Julien Bryois | 2022-01-25 | eQTL GWAS epigenome enrichment |
library(tidyverse)
library(parallel)
library(liftOver)
d_sig <- read_tsv('output/eqtl/eqtl.PC70.txt') %>%
filter(adj_p<0.05) %>%
dplyr::select(cell_type,pid,sid)
geno <- read_tsv('data_sensitive/genotypes/processed/snp_pos_hg38.txt',col_names=FALSE) %>%
setNames(c('chr','end','sid')) %>%
mutate(start=end) %>%
mutate(snp_pos_hg38=paste0(chr,':',start)) %>%
dplyr::select(sid,chr,start,end,snp_pos_hg38)
d_sig <- inner_join(d_sig,geno,by='sid')
cell_types <- unique(d_sig$cell_type)
write_bed <- function(i){
d_cell <- filter(d_sig,cell_type==cell_types[i]) %>%
dplyr::select(chr,start,end,snp_pos_hg38,pid) %>% mutate(strand='+') %>%
arrange(chr,start)
dir.create('data/epigenome_enrichment/fdensity',showWarnings = FALSE,recursive = TRUE)
write_tsv(d_cell,paste0('data/epigenome_enrichment/fdensity/',make.names(cell_types[i]),'.sig5FDR.bed'),col_names = FALSE)
}
lapply(1:length(cell_types),write_bed)
gtf <- rtracklayer::import('data/gencode/Homo_sapiens.GRCh38.96.filtered.gtf') %>%
as.data.frame() %>%
dplyr::filter(type=='gene') %>%
mutate(TSS_start=ifelse(strand=='+',start,end),
TSS_end=ifelse(strand=='+',start,end)) %>%
mutate(gene=paste0(gene_name,'_',gene_id)) %>%
dplyr::select(seqnames,TSS_start,TSS_end,gene,gene_name,strand) %>%
filter(seqnames%in%c(1:22)) %>%
dplyr::select(gene,strand) %>%
as_tibble()
files <- list.files('data_sensitive/eqtl',pattern='.bed.gz$',full.names = TRUE)
get_phenotype_coord <- function(i){
pheno <- read_tsv(files[i]) %>% dplyr::select(1:4) %>% mutate(random='.') %>% dplyr::rename(gene=ID) %>%
left_join(.,gtf,by='gene')
write_tsv(pheno,paste0('data/epigenome_enrichment/fdensity/',make.names(cell_types[i]),'.pheno.bed'),col_names = FALSE)
}
mclapply(1:length(files),get_phenotype_coord)
corces <- readxl::read_xlsx('data/epigenome_enrichment/external_data/corces/Corces_etal_Nat_Neuro_2020_TableS4.xlsx',skip=16)
corces <- corces %>%
gather(cell_type,present,ExcitatoryNeurons:OPCs) %>%
group_by(Peak_ID) %>%
mutate(count_present=sum(present)) %>%
ungroup()
corces_specific <- corces %>% filter(present==1,count_present==1)
Write bed files
write_bed_annot <- function(i,df,name){
dir.create('data/epigenome_enrichment/fdensity/corces',showWarnings = FALSE)
df %>% filter(cell_type==cell_types[i]) %>%
dplyr::select(hg38_Chromosome,hg38_Start,hg38_Stop,Peak_ID) %>%
mutate(hg38_Chromosome=gsub('chr','',hg38_Chromosome)) %>%
write_tsv(.,paste0('data/epigenome_enrichment/fdensity/corces/',make.names(cell_types[i]),'.corces.',name,'.bed'),col_names = FALSE)
}
cell_types <- unique(corces_specific$cell_type)
lapply(1:length(cell_types),write_bed_annot,df=corces_specific,name='specific')
Get DLPFC specific peaks using bedtools
mkdir -p data/epigenome_enrichment/fdensity/fullard
cd data/epigenome_enrichment/fdensity/fullard
source ~/.bashrc
ml bedtools/2.25.0-goolf-1.7.20
bedtools intersect -v -a DLPFC_neuron.bed -b DLPFC_glia.bed > DLPFC_neuron.specific.bed
bedtools intersect -v -a DLPFC_glia.bed -b DLPFC_neuron.bed > DLPFC_glia.specific.bed
path <- system.file(package="liftOver", "extdata", "hg19ToHg38.over.chain")
ch <- import.chain(path)
lift_to_h38 <- function(df,out){
df <- setNames(df,c('chr','start','end')) %>% filter(!is.na(chr)) %>% makeGRangesFromDataFrame(., TRUE)
seqlevelsStyle(df) <- "UCSC"
df_hg38 <- liftOver(df, ch) %>%
unlist() %>%
as.data.frame() %>%
as_tibble() %>%
mutate(seqnames=gsub('chr','',seqnames)) %>%
filter(seqnames%in%1:22) %>%
arrange(seqnames,start) %>%
dplyr::select(seqnames,start,end) %>%
sample_n(min(25000,nrow(.))) %>% #get at most 25000 peaks, more leads to failure of QTLtools for unknown reason
write_tsv(.,paste0('data/epigenome_enrichment/fdensity/nott/',out),col_names = FALSE)
}
astro_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=5) %>%
lift_to_h38(.,out='Astrocytes.enhancer.bed')
neuronal_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=7) %>%
lift_to_h38(.,out='Neuronal.enhancer.bed')
oligo_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=9) %>%
lift_to_h38(.,out='Oligodendrocytes.enhancer.bed')
micro_enh <- readxl::read_xlsx('data/epigenome_enrichment/external_data/nott/Nott_etal_Science2019_Table_S5.xlsx',skip=0,sheet=11) %>%
lift_to_h38(.,out='Microglia.enhancer.bed')
cd data/epigenome_enrichment/fdensity/nott
source ~/.bashrc
ml bedtools/2.25.0-goolf-1.7.20
bedtools intersect -v -a Astrocytes.enhancer.bed -b Microglia.enhancer.bed Neuronal.enhancer.bed Oligodendrocytes.enhancer.bed > Astrocytes.enhancer_specific.bed
bedtools intersect -v -a Microglia.enhancer.bed -b Astrocytes.enhancer.bed Neuronal.enhancer.bed Oligodendrocytes.enhancer.bed > Microglia.enhancer_specific.bed
bedtools intersect -v -a Neuronal.enhancer.bed -b Astrocytes.enhancer.bed Microglia.enhancer.bed Oligodendrocytes.enhancer.bed > Neuronal.enhancer_specific.bed
bedtools intersect -v -a Oligodendrocytes.enhancer.bed -b Astrocytes.enhancer.bed Microglia.enhancer.bed Neuronal.enhancer.bed > Oligodendrocytes.enhancer_specific.bed
ml GSL/2.5-GCCcore-7.3.0
ml Boost/1.67.0-foss-2018b
source ~/.bashrc
cd data/epigenome_enrichment/fdensity
mkdir -p results/corces
for f in *sig5FDR.bed
do
echo $f
for f2 in corces/*.corces.*
do
f2_name=`basename $f2`
QTLtools fdensity --qtl $f --bed $f2 --bin 10000 --out results/corces/density_${f}_${f2_name}
done
done
ml GSL/2.5-GCCcore-7.3.0
ml Boost/1.67.0-foss-2018b
source ~/.bashrc
cd data/epigenome_enrichment/fdensity
mkdir -p results/fullard
for f in *.sig5FDR.bed
do
echo $f
for f2 in fullard/*specific.bed
do
f2_name=`basename $f2`
QTLtools fdensity --qtl $f --bed $f2 --bin 10000 --out results/fullard/density_${f}_${f2_name}
done
done
ml GSL/2.5-GCCcore-7.3.0
ml Boost/1.67.0-foss-2018b
source ~/.bashrc
cd data/epigenome_enrichment/fdensity
mkdir -p results/nott
for f in *.sig5FDR.bed
do
echo $f
for f2 in nott/*.bed
do
f2_name=`basename $f2`
QTLtools fdensity --qtl $f --bed $f2 --bin 10000 --out results/nott/density_${f}_${f2_name}
done
done
sessionInfo()
R version 4.0.1 (2020-06-06)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /pstore/apps/OpenBLAS/0.3.1-GCC-7.3.0-2.30/lib/libopenblasp-r0.3.1.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] liftOver_1.12.0
[2] Homo.sapiens_1.3.1
[3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[4] org.Hs.eg.db_3.11.4
[5] GO.db_3.11.4
[6] OrganismDbi_1.30.0
[7] GenomicFeatures_1.40.0
[8] AnnotationDbi_1.50.0
[9] Biobase_2.48.0
[10] rtracklayer_1.48.0
[11] GenomicRanges_1.40.0
[12] GenomeInfoDb_1.24.0
[13] IRanges_2.22.2
[14] S4Vectors_0.26.1
[15] BiocGenerics_0.34.0
[16] gwascat_2.20.1
[17] forcats_0.5.0
[18] stringr_1.4.0
[19] dplyr_1.0.0
[20] purrr_0.3.4
[21] readr_1.3.1
[22] tidyr_1.1.0
[23] tibble_3.0.1
[24] ggplot2_3.3.3
[25] tidyverse_1.3.0
[26] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] colorspace_1.4-1 ellipsis_0.3.1
[3] rprojroot_1.3-2 XVector_0.28.0
[5] fs_1.4.1 rstudioapi_0.11
[7] bit64_0.9-7 fansi_0.4.1
[9] lubridate_1.7.9 xml2_1.3.2
[11] knitr_1.28 jsonlite_1.6.1
[13] Rsamtools_2.4.0 broom_0.5.6
[15] dbplyr_1.4.4 graph_1.66.0
[17] BiocManager_1.30.10 compiler_4.0.1
[19] httr_1.4.1 backports_1.1.7
[21] assertthat_0.2.1 Matrix_1.2-18
[23] cli_2.0.2 later_1.1.0.1
[25] htmltools_0.5.1.1 prettyunits_1.1.1
[27] tools_4.0.1 gtable_0.3.0
[29] glue_1.4.1 GenomeInfoDbData_1.2.3
[31] rappdirs_0.3.1 Rcpp_1.0.6
[33] cellranger_1.1.0 vctrs_0.3.1
[35] Biostrings_2.56.0 nlme_3.1-148
[37] xfun_0.14 rvest_0.3.5
[39] lifecycle_0.2.0 XML_3.99-0.3
[41] zlibbioc_1.34.0 scales_1.1.1
[43] hms_0.5.3 promises_1.1.1
[45] SummarizedExperiment_1.18.1 RBGL_1.64.0
[47] yaml_2.2.1 curl_4.3
[49] memoise_1.1.0 biomaRt_2.44.4
[51] stringi_1.4.6 RSQLite_2.2.0
[53] BiocParallel_1.22.0 rlang_0.4.10
[55] pkgconfig_2.0.3 bitops_1.0-6
[57] matrixStats_0.56.0 evaluate_0.14
[59] lattice_0.20-41 GenomicAlignments_1.24.0
[61] bit_1.1-15.2 tidyselect_1.1.0
[63] magrittr_1.5 R6_2.4.1
[65] generics_0.0.2 DelayedArray_0.14.0
[67] DBI_1.1.0 pillar_1.4.4
[69] haven_2.3.1 whisker_0.4
[71] withr_2.2.0 RCurl_1.98-1.2
[73] modelr_0.1.8 crayon_1.3.4
[75] utf8_1.1.4 BiocFileCache_1.12.0
[77] rmarkdown_2.2 progress_1.2.2
[79] grid_4.0.1 readxl_1.3.1
[81] blob_1.2.1 git2r_0.27.1
[83] reprex_0.3.0 digest_0.6.25
[85] httpuv_1.5.4 openssl_1.4.1
[87] munsell_0.5.0 askpass_1.1