Last updated: 2022-02-02

Checks: 7 0

Knit directory: snRNA_eqtl/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211124) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 40b6b67. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/magma_interaction_eqtl/
    Ignored:    data/magma_specific_genes/
    Ignored:    data_sensitive/
    Ignored:    output/figures/

Untracked files:
    Untracked:  analysis/._index.Rmd
    Untracked:  analysis/additional/
    Untracked:  analysis/alternatives/
    Untracked:  analysis/clean_analysis.Rmd
    Untracked:  analysis/log_run_slurm_out
    Untracked:  analysis/log_run_slurm_stderr
    Untracked:  analysis/portfolio/
    Untracked:  analysis/revision.Rmd
    Untracked:  analysis/run_slurm.Rscript
    Untracked:  analysis/run_slurm.sbatch
    Untracked:  data/dice/
    Untracked:  data/epigenome_enrichment/
    Untracked:  data/gencode/
    Untracked:  data/gnomad_loeuf/
    Untracked:  data/gtex/
    Untracked:  data/gwas/
    Untracked:  data/gwas_epigenome_overlap/
    Untracked:  data/metabrain/
    Untracked:  data/umap/
    Untracked:  output/coloc/
    Untracked:  output/eqtl/
    Untracked:  output_almost_final/
    Untracked:  output_tmp_QTLtools/
    Untracked:  output_tmp_fastQTL_sample_ambient_removed/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/_site.yml
    Modified:   analysis/plot_figures.Rmd
    Deleted:    output/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05_coloc_GTEx_Dice.Rmd) and HTML (docs/05_coloc_GTEx_Dice.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 0d18805 Julien Bryois 2022-01-27 Build site.
html 06d5e04 Julien Bryois 2022-01-25 Build site.
Rmd befc976 Julien Bryois 2022-01-25 coloc GTEx
html 1eba9f2 Julien Bryois 2022-01-06 Build site.
Rmd 58f7ae1 Julien Bryois 2022-01-06 Coloc GTEx Dice
html 1ec3603 Julien Bryois 2022-01-03 Build site.
Rmd 9926eae Julien Bryois 2022-01-03 Coloc GTEx Dice
Rmd edcd2db Julien Bryois 2021-12-17 Coloc GTEx Dice

Libraries

library(tidyverse)
library(data.table)
library(coloc)
library(parallel)
library(arrow)
library(biomaRt)
selected_trait <- 'ms'

Process GWAS

MS GWAS

if(selected_trait=='ms'){
sumstats <- vroom::vroom('data/gwas/ms/discovery_metav3.0.meta') %>% 
  mutate(CHR=paste0('chr',CHR)) %>% 
  filter(!is.na(P)) %>% 
  mutate(beta=log(OR),
         se=abs(beta/qnorm(P/2))) %>% 
  dplyr::select(variant_id=SNP,
                p_value=P,
                chr=CHR,
                bp_b37=BP,
                effect_allele=A1,
                other_allele=A2,
                beta,
                se) %>% 
  filter(beta!=0) %>% #Some SNPs have OR=1, so se estimate = 0, leading to issues in coloc, we exclude these here
    dplyr::mutate(SNP_id_hg19=paste0(chr,':',bp_b37))

loci <- read_tsv('data/gwas/ms/loci_LDlinkR.r2.0.1.EUR.txt')
}

Load MAF

We will later add the MAF of SNPs in our study to the MS sumstats as this is required by coloc to estimate sdY when the expression data was not standard normalized (which is the case for DICE). We make the assumption that MAF in DICE is similar to the MAF in our european eQTL study.

snp_pos <- data.table::fread('data_sensitive/genotypes/processed/snp_pos_hg38_hg19.mappings.txt',data.table = FALSE) %>% as_tibble() %>% 
  dplyr::select(SNP_id_hg19,MAF)

Add closest gene to loci

closest <- read_tsv(paste0('data/gwas/',selected_trait,'/closest.protein.coding.bed'),col_names = FALSE) %>% 
  setNames(c('chr_snp','start_snp','end_snp','GWAS_snp','beta','chr_gene','start_gene','end_gene','gene','distance')) %>% 
  mutate(GWAS_snp_pos=paste0(chr_snp,':',start_snp)) %>% 
  dplyr::select(GWAS_snp,GWAS_snp_pos,gene,beta,distance) %>% 
  separate(gene,into=c('symbol','ensembl'),sep='_') %>% 
  add_count(GWAS_snp) %>% 
  group_by(GWAS_snp) %>% 
  mutate(locus_name_gene=ifelse(n==1,symbol,paste0(symbol,collapse=' - '))) %>% 
  ungroup() %>% 
  dplyr::select(GWAS_snp_pos,locus_name_gene,beta_top_GWAS=beta) %>% 
  unique() %>% arrange(-abs(beta_top_GWAS))
loci <- left_join(loci,closest,by='GWAS_snp_pos')

GTEx Mappings

if(!file.exists(paste0('data/gtex/variant_id_SNP_mapping.',selected_trait,'.rds'))){
  mappings <- fread('data/gtex/GTEx_Analysis_2017-06-05_v8_WholeGenomeSeq_838Indiv_Analysis_Freeze.lookup_table.txt',
                    data.table = FALSE) %>% 
    filter(num_alt_per_site==1) %>% 
    filter(chr!='chrX') %>%
    dplyr::select(id=variant_id,rs_id_dbSNP151_GRCh38p7,A1=alt,A2=ref,variant_id_b37) %>% 
    dplyr::rename(variant_id=rs_id_dbSNP151_GRCh38p7) %>% 
    filter(variant_id%in%sumstats$variant_id) %>% 
    mutate(chr_hg19=sapply(str_split(variant_id_b37,'_'),"[", 1)) %>% 
    mutate(pos_hg19=sapply(str_split(variant_id_b37,'_'),"[", 2)) %>% 
    mutate(SNP_id_hg19=paste0('chr',chr_hg19,':',pos_hg19)) %>% 
    dplyr::select(-chr_hg19,-pos_hg19,-variant_id_b37)
  
saveRDS(mappings,paste0('data/gtex/variant_id_SNP_mapping.',selected_trait,'.rds'))
} else{
  mappings <- readRDS(paste0('data/gtex/variant_id_SNP_mapping.',selected_trait,'.rds'))
}

eQTL sumstats Locations

GTEx

Set location of nominal results files:

gtex_eqtl_path <- 'data/gtex/GTEx_Analysis_v8_EUR_eQTL_all_associations/'
gtex_sqtl_path <- 'data/gtex/GTEx_Analysis_v8_EUR_sQTL_all_associations/'
gtex_eqtl_spleen_path <- paste0(gtex_eqtl_path,'Spleen.v8.EUR.allpairs.')
gtex_eqtl_blood_path <- paste0(gtex_eqtl_path,'Whole_Blood.v8.EUR.allpairs.')
gtex_sqtl_spleen_path <- paste0(gtex_sqtl_path,'Spleen.v8.EUR.sqtl_allpairs.')
gtex_sqtl_blood_path <- paste0(gtex_sqtl_path,'Whole_Blood.v8.EUR.sqtl_allpairs.')

Dice

dice_eqtl_path <- 'data/dice/'
dice_B_cell_naive <- paste0(dice_eqtl_path,'B_CELL_NAIVE.sumstats.')
dice_CD4_naive <- paste0(dice_eqtl_path,'CD4_NAIVE.sumstats.')
dice_CD4_stim <- paste0(dice_eqtl_path,'CD4_STIM.sumstats.')
dice_CD8_naive <- paste0(dice_eqtl_path,'CD8_NAIVE.sumstats.')
dice_CD8_stim <- paste0(dice_eqtl_path,'CD8_STIM.sumstats.')
dice_M2 <- paste0(dice_eqtl_path,'M2.sumstats.')
dice_monocytes <- paste0(dice_eqtl_path,'MONOCYTES.sumstats.')
dice_NK <- paste0(dice_eqtl_path,'NK.sumstats.')
dice_TFH <- paste0(dice_eqtl_path,'TFH.sumstats.')
dice_TH17 <- paste0(dice_eqtl_path,'TH17.sumstats.')
dice_TH1 <- paste0(dice_eqtl_path,'TH1.sumstats.')
dice_TH2 <- paste0(dice_eqtl_path,'TH2.sumstats.')
dice_THSTAR <- paste0(dice_eqtl_path,'THSTAR.sumstats.')
dice_TREG_MEM <- paste0(dice_eqtl_path,'TREG_MEM.sumstats.')
dice_TREG_NAIVE <- paste0(dice_eqtl_path,'TREG_NAIVE.sumstats.')
dice_files <- tibble(files=c(dice_B_cell_naive,
                             dice_CD4_naive,
                             dice_CD4_stim,
                             dice_CD8_naive, 
                             dice_CD8_stim,
                             dice_M2,
                             dice_monocytes, 
                             dice_NK,
                             dice_TFH,
                             dice_TH17,
                             dice_TH1,
                             dice_TH2,
                             dice_THSTAR,
                             dice_TREG_MEM,
                             dice_TREG_NAIVE)) %>% 
  mutate(name=gsub('data/dice/|.sumstats.','',files))

Coloc

GTEx read

prepare_eqtl_gtex <- function(gtex_tissue_path,chrom_locus,sumstats_locus){
  gtex_file <- paste0(gtex_tissue_path,chrom_locus,'.parquet')
  gtex <- read_parquet(gtex_file,
                       as_tibble = TRUE,
                       props=ParquetReaderProperties$create(use_threads=FALSE)) %>%
    dplyr::select(gene=phenotype_id,
                  id=variant_id,
                  p_eqtl=pval_nominal,
                  beta_eqtl=slope,
                  se_eqtl=slope_se) %>% 
    inner_join(.,mappings,by='id') %>%
    filter(SNP_id_hg19%in%sumstats_locus$SNP_id_hg19) %>% 
    filter(!is.na(beta_eqtl)) %>% 
    add_count(gene) %>% 
    filter(n>10) #Only keep genes with at least 10 SNPs
}

Dice read

prepare_eqtl_dice <- function(eqtl_path,chrom_locus,sumstats_locus){
  file <- paste0(eqtl_path,chrom_locus,'.gz')
  eqtl <- fread(file,header = FALSE,data.table=FALSE) %>% 
    dplyr::select(gene=V3,
                  p_eqtl=V7,
                  beta_eqtl=V6,
                  SNP_id_hg19=V2,
                  A1=V5,
                  A2=V4) %>% 
    mutate(se_eqtl=abs(beta_eqtl/qnorm(p_eqtl/2))) %>% #compute standard error from pvalue and beta
    filter(SNP_id_hg19%in%sumstats_locus$SNP_id_hg19) %>% 
  add_count(gene) %>% 
  filter(n>10) %>% 
  filter(beta_eqtl!=0) %>% 
  inner_join(.,snp_pos,by='SNP_id_hg19')
}
run_coloc <- function(tissue_sumstats,tissue_name,sumstats_locus,dice=FALSE){
  
  if(nrow(tissue_sumstats)==0){
    return (NULL)
  }
  
  out <- lapply(unique(tissue_sumstats$gene),function(x){
    message(x)
    tissue_sumstats_gene <- filter(tissue_sumstats,gene==x)
    sumstats_locus_gene <- sumstats_locus %>% inner_join(.,tissue_sumstats_gene,by='SNP_id_hg19')
    
    if (nrow(sumstats_locus_gene)>0){
  
     coloc_res_pval <- coloc.abf(
       dataset1=list(beta=sumstats_locus_gene$beta,
                     varbeta=sumstats_locus_gene$se^2,
                     type="cc"),
       dataset2=list(beta=sumstats_locus_gene$beta_eqtl,
                     varbeta=sumstats_locus_gene$se_eqtl^2,
                     sdY=1,
                     type="quant"))$summary %>% 
       as.data.frame()
       colnames(coloc_res_pval) <- x
    
    if (dice==TRUE){
      #If dice dataset, the expression data was not inverse normal transformed. 
      #We will estimate sdY from N and MAF
      
       coloc_res_pval <- coloc.abf(
       dataset1=list(beta=sumstats_locus_gene$beta,
                     varbeta=sumstats_locus_gene$se^2,
                     type="cc"),
       dataset2=list(beta=sumstats_locus_gene$beta_eqtl,
                     varbeta=sumstats_locus_gene$se_eqtl^2,
                     MAF=sumstats_locus_gene$MAF,
                     N=91,
                     type="quant"))$summary %>% 
       as.data.frame()
       colnames(coloc_res_pval) <- x
    }
    
    #Get direction of effect for all SNPs at the locus
    sumstats_locus_gene <- sumstats_locus_gene %>% 
      mutate(direction=case_when(
      (effect_allele==A1 & other_allele==A2)  ~ sign(beta*beta_eqtl),
      (effect_allele==A2 & other_allele==A1)  ~ -sign(beta*beta_eqtl),
    TRUE ~ 0))
   
   #Get Proportion of positive direction
   direction_prop <- sumstats_locus_gene %>% 
     summarise(prop_pos_direction=sum(direction==1)/n()) %>% 
     setNames(x) %>% 
     as.data.frame()
   rownames(direction_prop) <- 'prop_pos_direction'
   
   direction_sign <- sumstats_locus_gene %>% 
     #Take SNP with strongest evidence of an effect on gene expression
     filter(p_eqtl==min(p_eqtl)) %>% 
     #If there are ties, take SNPs with lowest GWAS association (at random of ties).
     slice_min(n=1,p_value,with_ties=FALSE) %>% 
     summarise(direction=direction,
               beta_gwas=case_when(
                    (effect_allele==A1 & other_allele==A2)  ~ beta,
                    (effect_allele==A2 & other_allele==A1)  ~ -beta
                    ),
              beta_eqtl=beta_eqtl,
               beta_smr=case_when(
                    direction== 1  ~ abs(beta)/abs(beta_eqtl),
                    direction== -1  ~ -(abs(beta)/abs(beta_eqtl))
                 ),
               ) %>% 
     t() %>% 
     as.data.frame()
    colnames(direction_sign) <- x
   
    #Add direction of effect to coloc results
    coloc_res_pval <- rbind(coloc_res_pval,direction_sign,direction_prop)

    return(coloc_res_pval)
    }
    else{
      return (NULL)
    }
    
})
  
  out_pvalue <- out %>% 
    bind_cols() %>% 
    t() %>% 
    as.data.frame() %>% 
    rownames_to_column('gene') %>% 
    as_tibble() %>% 
    arrange(-PP.H4.abf) %>% 
    mutate(tissue=tissue_name)
  
  return(out_pvalue)
}
#Add metadata data for the type of colocalization analysis (if the coloc did not return a NULL value (for e.g. if there were no SNPs in common between the GWAS and the eQTL analaysis.))
add_meta <- function(d,type_name,set_direction_to_0=FALSE){
  if(!is.null(d)){
    d <- d %>% mutate(type=type_name)
    if(set_direction_to_0){
      d <- d %>% mutate(direction=0)
    }
  }
  return(d)
}

Run

coloc_results_all <- mclapply(1:nrow(loci),function(i){
  
  #Get coordinates from the GWAS locus
  chrom_locus <- loci$chrom[i]
  start <- loci$start[i] %>% as.numeric()
  end <- loci$end[i] %>% as.numeric()
  
  closest_gene_locus <- loci$locus_name_gene[i]
  beta_top_GWAS_locus <- loci$beta_top_GWAS[i]
  GWAS_snp_name <- loci$GWAS_snp[i]
  GWAS_snp_pos_name <- loci$GWAS_snp_pos[i]

  #Keep GWAS sumstats of SNPs in the locus
  sumstats_locus <- filter(sumstats,chr==chrom_locus) %>% 
    filter(bp_b37>=start & bp_b37<=end)

  #Running colocalization analysis
  
  ##GTEx
  
  ### eQTL
  eqtl_blood <- prepare_eqtl_gtex(gtex_eqtl_blood_path,chrom_locus,sumstats_locus)
  eqtl_blood_coloc <- run_coloc(eqtl_blood,'blood',sumstats_locus) %>% 
    add_meta(type_name='eQTL')
  rm(eqtl_blood)
  gc()
  
  eqtl_spleen <- prepare_eqtl_gtex(gtex_eqtl_spleen_path,chrom_locus,sumstats_locus)
  eqtl_spleen_coloc <- run_coloc(eqtl_spleen,'spleen',sumstats_locus) %>% 
    add_meta(type_name='eQTL')
  rm(eqtl_spleen)
  gc()
  
  ### sQTL
  sqtl_blood <- prepare_eqtl_gtex(gtex_sqtl_blood_path,chrom_locus,sumstats_locus)
  sqtl_blood_coloc <- run_coloc(sqtl_blood,'blood',sumstats_locus) %>% 
    add_meta(type_name='sQTL',set_direction_to_0=TRUE)
  rm(sqtl_blood)
  gc()
  
  sqtl_spleen <- prepare_eqtl_gtex(gtex_sqtl_spleen_path,chrom_locus,sumstats_locus)
  sqtl_spleen_coloc <- run_coloc(sqtl_spleen,'spleen',sumstats_locus) %>% 
    add_meta(type_name='sQTL',set_direction_to_0=TRUE)
  rm(sqtl_spleen)
  gc()
  
  #Dice
  dice_res <- lapply(1:nrow(dice_files), function(j){
    dice_eqtl_file <- prepare_eqtl_dice(dice_files$files[j],chrom_locus,sumstats_locus)
    dice_coloc <- run_coloc(dice_eqtl_file,dice_files$name[j],sumstats_locus,dice=TRUE) %>% 
      add_meta(type_name='eQTL')
    rm(dice_eqtl_file)
    gc()
    return(dice_coloc)
  }) %>% bind_rows()
  
  pval_eqtl <- rbind(eqtl_blood_coloc,eqtl_spleen_coloc,sqtl_blood_coloc,sqtl_spleen_coloc,dice_res)
  
  if(!is.null(pval_eqtl)){
    pval_eqtl <- pval_eqtl %>% 
      mutate(locus=loci$locus_name[i],
           coloc_method='beta') %>% 
      mutate(closest_gene=closest_gene_locus,
             beta_top_GWAS=beta_top_GWAS_locus,
             GWAS_snp=GWAS_snp_name,
             GWAS_snp_pos=GWAS_snp_pos_name)
  }
  results <- pval_eqtl 
  if(!is.null(results)){
    results <- results %>% 
      arrange(-PP.H4.abf) %>% 
      dplyr::select(locus,closest_gene,GWAS_snp,GWAS_snp_pos,beta_top_GWAS,everything())
  }
  
  return(results)
},mc.cores = 10,mc.preschedule = FALSE)
coloc_results_all <- coloc_results_all %>%
  bind_rows() %>% 
  mutate(gene_parsed=str_extract(gene, "ENSG.+") %>% gsub('\\..+','',.)) %>% 
  arrange(-PP.H4.abf)

Add symbol IDs

From biomart

mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
genes <- unique(coloc_results_all$gene_parsed)
G_list <- getBM(filters= "ensembl_gene_id", 
                attributes= c("ensembl_gene_id","hgnc_symbol"),
                values=genes,
                mart= mart) %>% 
  dplyr::rename(gene_parsed=ensembl_gene_id)
coloc_results_all <- coloc_results_all %>% left_join(.,G_list,by='gene_parsed')
coloc_results_all <- coloc_results_all %>% 
  dplyr::select(locus:beta_top_GWAS,symbol=hgnc_symbol,ensembl=gene_parsed,nsnps:coloc_method)

Add LOEUF

loeuf <- read_tsv('data/gnomad_loeuf/supplementary_dataset_11_full_constraint_metrics.tsv') %>% 
  filter(canonical==TRUE) %>% 
  dplyr::select(gene,gene_id,transcript,oe_lof_upper,p) %>% 
  mutate(oe_lof_upper_bin = ntile(oe_lof_upper, 10)) %>% 
  dplyr::rename(ensembl=gene_id,symbol=gene) %>% 
  dplyr::select(ensembl,oe_lof_upper_bin)
coloc_results_all <- left_join(coloc_results_all,loeuf,by='ensembl')

Write

dir.create('output/coloc',showWarnings = FALSE)
write_tsv(coloc_results_all,paste0('output/coloc/coloc.',selected_trait,'.gtex_dice.txt'))

sessionInfo()
R version 4.0.1 (2020-06-06)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /pstore/apps/OpenBLAS/0.3.1-GCC-7.3.0-2.30/lib/libopenblasp-r0.3.1.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] biomaRt_2.44.4    arrow_2.0.0       coloc_5.1.0       data.table_1.12.8
 [5] forcats_0.5.0     stringr_1.4.0     dplyr_1.0.0       purrr_0.3.4      
 [9] readr_1.3.1       tidyr_1.1.0       tibble_3.0.1      ggplot2_3.3.3    
[13] tidyverse_1.3.0  

loaded via a namespace (and not attached):
 [1] nlme_3.1-148         fs_1.4.1             lubridate_1.7.9     
 [4] bit64_0.9-7          progress_1.2.2       httr_1.4.1          
 [7] rprojroot_1.3-2      tools_4.0.1          backports_1.1.7     
[10] R6_2.4.1             irlba_2.3.3          DBI_1.1.0           
[13] BiocGenerics_0.34.0  colorspace_1.4-1     withr_2.2.0         
[16] prettyunits_1.1.1    tidyselect_1.1.0     gridExtra_2.3       
[19] curl_4.3             bit_1.1-15.2         compiler_4.0.1      
[22] git2r_0.27.1         cli_2.0.2            rvest_0.3.5         
[25] Biobase_2.48.0       xml2_1.3.2           scales_1.1.1        
[28] askpass_1.1          rappdirs_0.3.1       mixsqp_0.3-43       
[31] digest_0.6.25        rmarkdown_2.2        pkgconfig_2.0.3     
[34] htmltools_0.5.1.1    dbplyr_1.4.4         rlang_0.4.10        
[37] readxl_1.3.1         susieR_0.11.42       rstudioapi_0.11     
[40] RSQLite_2.2.0        generics_0.0.2       jsonlite_1.6.1      
[43] vroom_1.3.2          magrittr_1.5         Matrix_1.2-18       
[46] Rcpp_1.0.6           munsell_0.5.0        S4Vectors_0.26.1    
[49] fansi_0.4.1          viridis_0.5.1        lifecycle_0.2.0     
[52] stringi_1.4.6        whisker_0.4          yaml_2.2.1          
[55] BiocFileCache_1.12.0 plyr_1.8.6           grid_4.0.1          
[58] blob_1.2.1           promises_1.1.1       crayon_1.3.4        
[61] lattice_0.20-41      haven_2.3.1          hms_0.5.3           
[64] knitr_1.28           pillar_1.4.4         stats4_4.0.1        
[67] reprex_0.3.0         XML_3.99-0.3         glue_1.4.1          
[70] evaluate_0.14        modelr_0.1.8         vctrs_0.3.1         
[73] httpuv_1.5.4         cellranger_1.1.0     openssl_1.4.1       
[76] gtable_0.3.0         reshape_0.8.8        assertthat_0.2.1    
[79] xfun_0.14            broom_0.5.6          later_1.1.0.1       
[82] viridisLite_0.3.0    AnnotationDbi_1.50.0 memoise_1.1.0       
[85] IRanges_2.22.2       workflowr_1.6.2      ellipsis_0.3.1